
.

Verification of Java Programs using Symbolic
Execution and Invariant Generation

Corina S. PMixeanul and Willem Visser2

Kestrel Technology, NASA Ames Research Center, Ivloffett Field, CA 94035, USA

RIACS/USR-4, N - S A -4mes Research Center, Moffett Field, CA 94035, CS.1
pcorinaaemail. arc .nasa. gov

wisserQemail.arc.nasa.gov

Abstract. Softm-are verification is recognized as an important and dif-
ficult problem. We present a norel framework, based on symbolic ese-
cution, for the automated verification of software. The framework uses
annotations in the form of method specifications an3 loop invariants.
We present a novel iterative technique that uses invariant strengthening
and approximation for discovering these loop invariants automatically.
The technique handles different types of data (e.g. boolean and numeric
constraints, dynamically allocated structures and arrays) and it allows
for checking universally quantified formulas. Our framework is built on
top of the Java PathFinder model checking toolset and i t was used for
the verification of several non-trivial Java programs.

1 Introduction

Model checking is becoming a popular technique for the verification of soft-
ware [1:6,21,30], but it typically can only deal -with closed systems and it suffers
from the state-explosion problem. In previous work [23] we have developed a ver-
ification framexork based on symbolic execution [24] and model checking that
allows the analysis of complex softwvare that take inputs from unbounded do-
mains with complex structure, and helps combat state-space eqlosion. In that
framework, a program is instrumented to add support for manipulating formu-
las and for systematic treatment of aliasing, so that to enable a standard model
checker to perform symbolic execution of the program. The framework is built
on top of the Java PathFinder model checker and it was used for test input
generation and for error detection in complex Java programs, but it could not
be used for proving properties of programs containing loops.

We present here a method that uses the symbolic execution framework pre-
sented in [23] for proving (light-weight) specifications of Java programs that con-
tain loops. The method requires annotations in the form of method specifications
and loop invariants. We present a novel iterative technique that uses invariant
strengthening and approximation for discovering these loop invariants automati-
cally. Our technique uniformly handles different types of constraints (e.g. boolean
and numeric constraints, constraints on dynamically allocated structures and ar-
rays) and it allows for checking universally quantified formulas. These formulas

,

are necessary for expressing properties of programs that manipulate unbounded
data, such as arrays.

Our technique for loop invariant generation works backward from the prop-
erty to be checked and has three basic ingredients: iterative invariant strength-
ening, iterative approximation and refinement. Symbolic execution is used to
check that the current invariant is inductive: the base case checks that the cur-
rent candidate invariant is true when entering the loop and the induction step
checks that the current invariant is maintained by the execution of the loop body.
Failed proofs of the induction step are used for iterative invariant strengthening,
a process that may result in a (possibly infinite) sequence of candidate invari-
ants. At each strengthening step, we further use a novel iterative approximation
technique to achieve termination.

For strengthening step IC, we use a (finite) set of relevant constraints called the
universe of constraints U k . The iterative approximation consists of a sequence
of strengthening in which we drop all the constraints that are newly generated
(and are not present in Uk) . Since V k is finite, this process is guaranteed to
converge to an inductive approximate invariant that is a boolean combination of
the constraints in 0-k. The intuition here has similarities to predicate abstraction
techniques [17]; that perform iterative computations over a finite set of predicates
(i.e. constraints). -4 failed base case proof can either indicate that there is an
error in the program or that the approximation that we use at the current step
is too strong, in which case we use refinement, that consists of enlarging the
universe of constraints with new constraints that come from the nest candidate
invariant (computed at step IC + 1).

Loop invariant generation has received much attention in the literature, see
e.g. [5,8,25,29,31]. Most of the methods presented in these papers were con-
cerned with the generation of numerical invariants. A recent paper [13] describes
a loop invariant generation method for Java programs that uses predicate ab-
straction. The method handles universally quantified specifications but it relies
on user supplied input predicates. We show (in Section 5) how our iterative tech-
nique discovers invariants for (some of) the examples from [13] without any user
supplied predicates.

The main contributions of our work are:

- A verification framework that combines symbolic execution and model check-
ing in a novel way; we extend the basic framework presented in [23] with the
ability to handle arrays symbolically and to prove partial-correctness spec-
ifications, that may be universally quantified. This results in a flexible and
powerful tool that can be used for proving program correctness, in addition
to test input generation and model checking.

- -4 new method for iterative invariant generation. The method handles uni-
formly different types of constraints (e.g. boolean and numeric constraints,
arrays and objects) and it can be used in conjunction with more powerful
approximation methods (e.g. widening [7,9]).

- A series of (smaIl) non-trivial Java examples showing the merits of our
method; our method extends to other languages and model checkers.

// @ precondition: a != null;
void example(int[] a) {
1: int i = 0;
2: uhile (i < a.length) {
3: atil = 0;
4: i++;

5: assert a[O] == 0;
1

>

Fig. 1. Motivating example

Section 2 shows an example analysis in our framework. Section 3 gives back-
ground on symbolic execution and it describes our symbolic execution frame-
work for Java programs. Section 4 gives our method for proving properties of
Java programs using symbolic execution and invariant generation and Section 5
illustrates its application to the verification of several non-trivial Java programs.
We give related work in Section 6 and conclude in Section 7.

2 Example

We illustrate our verification framework using the code shown in Figure 1. This
method takes as a parameter an array of integers a and it sets all the elements
of a to zero. This method has a precondition that its input is not null. The
assert clause declares a partial correctness property that states that after the
execution of the loop, the value of the first element in a is zero.

Using the loop invariant i 2 0, our framework can be used to automatically
check that there are no array bounds violations. This is a simple invariant that
can be stated without much effort. In order to prove that there are no assertion
violations, a more complex loop invariant is needed: -.(a[O] # 0 A i > 0).

Constructing this loop invariant requires ingenuity. Our framework discovers
this invariant by iterative approximation. It starts with IO = -(u[O] # 0 A i 2
a.Zength) which is the weakest possible invariant that is necessary to prove that
the assertion is not violated. When checking this invariant t o see if it is inductive
we find a violation: if the formula (i + 1) 2 a.Zength A u[O] # 0 A 0 < i < d e n g t h
holds at the beginning of the loop, then IO does not hold at the end of the loop. At
the next iteration, we strengthen 10 using a[O] # OAO < i < d e n g t h (Le. we drop
the new constraint (i + 1) 2 a.Zength that is due to the iterative computation
in the loop body). This yields the formula: ~ (a [0] # 0 A i 2 d e n g t h) A -(a[O] #
0 A 0 < i < adength), which simplifies to the desired invariant.

Now suppose we want to verify an additional assertion, which states that,
after the execution of the loop, every element in the array a is set to zero:
V int j : a[j] = 0. This assertion is universally quantified; it refers to the quan-
tified variable j as well to the program variables. We model it by introducing
a symbolic constant j, which is a new variable that is not mentioned elsewhere

. l x: x, y: Y

i n t x, y;
1: if (x > y) C
2: x = x + y ;
3: y = x - y ;
4: x = x - y ;
5: if (x > y)
6: assert (false) ;

1

- .
PC: true

. Y -%
: x: x, y: Y x: x, y: Y ;
I PC:. X?Y . . : : PC: X<=Y

? I

- .
PC: true

. Y -%
: x: x, y: Y x: x, y: Y ;
I PC:. X?Y . . : : PC: X<=Y

? I
...... .? L

j x: X+Y, y: Y
I PC:X>Y :

: x: X+Y, y: x
........

. 3$"'-:

................ 4 i

PC:X>Y ~

j x: Y, y: x :

1 i P C : X > Y k Y > X ;
FALSE! j

Fig. 2. Code that swaps two integers and the corresponding symbolic execution tree,
where transitions are labeled with program control points

in the program and it is assigned a new, unconstrained symbolic value. Our
symbolic execution framework automatically infers the loop invariant: ~ (a [j] #
0 A i 2 a.length A 0 5 j < a.length) A ~ (a [j] # 0 A j < i A 0 5 i , j < alength).

Since the symbolic constant j represents some fixed unknown value, this in-
variant is valid for any value of j . This technique is crucial for checking programs
that manipulate unbounded data, such as arrays [13].

3 Symbolic Execution in Java PathFinder

In this section we give some background on symbolic execution and we present
the symbolic execution framework used for reasoning about Java programs.

3.1 Background: Symbolic execution

The main idea behind symbolic execution [24] is to use symbolic values, instead
of actual data, as input values, and to represent the values of program variables
as symbolic expressions. As a result, the output values computed by a program
are expressed as a function of the input symbolic values.

The state of a symbolically executed program includes the (symbolic) values
of program variables, a path condition (pc) and a program counter. The path
condition is a (quantifier-free) boolean formula over the symbolic inputs; it ac-
cumulates constraints which the inputs must satisfy in order for an execution
to follow the particular associated path. The program counter defines the next
statement to be executed. A symbolic execution tree characterizes the execution
paths followed during the symbolic execution of a program. The nodes represent
program states and the arcs represent transitions between states.

Consider the code fragment in Figure 2. which swaps the values of integer
lariables x and y. when x is greater than y. Figure 2 also shows the correspondirig
symbolic execution tree. Initially. PC is true and x and y have symbolic values
X and Y, respectively. At each branch point, PC is updated with assumptions
about the inputs, in order to choose between alternative paths. For example,
after the execution of the first statement, both then and else alternatives of the
i f statement are possible, and PC is updated accordingly. If the path condition
becomes false, i.e., there is no set of inputs that satisfy it, this means that the
symbolic state is not reachable, and symbolic execution does not continue for
that path. For example, statement (6) is unreachable.

3.2 Generalized Symbolic Execution

In [23] we describe an algorithm for generalizing traditional symbolic execution
to support advanced constructs of modern programming languages, such as Java
and C++. The algorithm handles dynamically allocated structures (e.g., lists and
trees), method preconditions (e.g., acyclicity of lists), data (e.g., integers and
strings) and concurrency. Partial correctness properties are given as assertions
in the program and temporal specifications. We have since extended the work
in [23] by adding support for symbolic execution of arrays and for checking
quantified formulas.

3.3 Symbolic Execution Framework .

our symbolic execution framework automates test case generation and allows
model checking concurrent programs that take inputs from unbounded domains
with complex structure. To enable a model checker to perform symbolic execu-
tion. the original pr0gra.m is instrumented by doing a source to source translation
that adds nondeterminism and support for manipulating formulas that represent
path conditions. The model checker checks the instrumented program using its
usual state space exploration techniques - essentially, the model checker ex-
plores the symbolic execution tree of the program. -4 state includes a heap con-
figuration, a path condition on primitive fields, and thread scheduling. Whenever
a path condition is updated, it is checked for satisfiability using an appropriate
decision procedure, such as the Omega library 1271 for linear integer constraints.
If the path condition is unsatisfiable, the model checker backtracks.

Note that performing (forward) symbolic execution on programs with loops
can explore i n h i t e execution trees. This is why, for systematic state space ex-
ploration, the framework presented in [23] uses depth first search with iterative
deepening or breadth first search. The framework can be used for test input
generation and for finding counterexamples to safety properties. If there is an
upper bound on the number of times each loop in the program may be executed,
the framework can also be used for proving correctness, since the corresponding
symbolic execution tree is finite.

However, for most programs, no fixed bound on the number of times each loop
is executed exists and the corresponding execution trees are infinite. In order to

void example0 {
IntArrayStructure a = new IntArrayStructureo;
Expression i = new IntegerConstant(0);

while(Expression.pc.-update-LT(i,a.length)) { .
a.-set(i,new IntegerConstant(0)) ;
i = i.-plus(new IntegerConstant(1));

3
assert Expression.pc.-update-EQ(a,-get(new IntegerConstant(O)),O);

1

Fig. 3. Instrumented code

prove the correctness of such programs, we have extended our framework with
the ability of traversing the symbolic execution tree inductively rather than
explicitly, using loop invariants (as presented in the next section).

3.4 Java PathFinder

Our framework uses the Java PathFinder(JPF) [30] model checker to analyze
the instrumented programs. As a decision procedure, the framework uses a Java
implementation of the Omega library.

JPF is an explicit-state model checker for Java programs that is built on top
of a custom-made Java Virtual Machine (JVM). Since it is built on a JVM, it
can handle all of the language features of Java, but in addition it also treats
nondeterministic choice expressed in annotations of the program being analyzed
- annotations are added to the programs through method calls to a special class
Verify. These features (Verify. chooseboolean() and Verify. choose(n))
for adding nondeterminism are used to implement the updating of path condi-
tions. JPF also supports a program annotation to forces the search to backtrack
(Verify. ignoreIf (condi t ion)) when a certain condition evaluates to t r u e
this is used to stop the analysis of infeasible paths (when path conditions are
found to be unsatisfiable).

3.5 Instrument at ion

The interested reader is referred to [23] for a detailed description of how the
code is instrumented for symbolic execution, here we will instead just highlight
some key new features.

The main idea is to replace concrete types with corresponding “symbolic
types” (i.e. library classes that we provide) and concrete operations with method
calls that implement “equivalent” operations on symbolic types. As an illustra-
tion of the instrumentation, consider the code from Figure 1. Figure 3 gives
part of the resulting code after instrumentation and Figure 4 gives part of the li-
brary classes that we provide. Classes Expression and IntArrayStructure sup-
port manipulation of symbolic integers and symbolic integer arrays, respectively.

clzss Expression c ...
static Pathcondition pc;
Expression -plus(Expression e){

. . . 1 1

class Pathcondition .(...
Constraints c;
boolean -update-LT(Expression 1.

Expression r) i
boolean result;
result=Verify.choose-boolean();
if (result)

c.add-constraint-LT(el,e2);
else

c.add-constraint-GE(e1 ,e21 ;
Verify.ignoreIf (!c.is-satO) ;
return result;

class InthrrayStructure
Vector -v;
Expression length;
...
Arraycell -new-ArrayCell (Expression idx) {
for(int i=O;i<-v.sizeO;i++) {
Arraycell cell=(hrrayCell)-v.elementAt(i);
if(F.xpression.pc.-update-EQ(cell.idx,idx))
return cell;

1
Arraycell t=new Arraycell (length, idx ,name) ;
-v.add(t);
return t;

1
public Expression -get(Expression idx) {
assert(Expression.pc.-update-GE(idx, O)&&

Expression.pc.-update-LT(idx,length));
Arraycell cell = -new-ArrayCell(idx);
return cell.elem;

Fig. 4. Library classes

The s ta t ic field Expression. p c stores the (numeric) path condition. Method
-updateLT makes a nondeterministic choice (Le., a call to chooseAoolean) to
add to the path condition the constraint or the negation of the constraint its in-
vocation expresses and returns the corresponding boolean. Method i s sa t uses
the Omega library to check if the path condition is infeasible (in which case, JPF
will backtrack). Method -plus constructs a new Expression that represents the
sum of its input parameters. Integerconstant is a subclass of Expression and
wraps concrete integer values.

To store the input array elements that are created as a result of a lazy
initialization, we use a variable of class Vector, for each input array. The _get
and s e t methods use the elements in this vector to systematically initialize
input array elements. When the execution accesses a symbolic array cell, the
algorithm nondeterministically initializes it to a new cell or to a cell that was
created during a prior cell initialization. The assertion checks in the - g e t / s e t
methods establish that there are no array out of bounds errors.

4 Proving Properties of Java Programs

In this section we present a Floyd-Hoare style method [14,18,20] for proving light-
weight properties of Java programs. The method requires loop invariants and we
present a novel iterative technique for discovering (some of) them automatically.

init;
while (C) {

body ;
J
assert P;

1:
2:
3 :
4:
5:
6:

.7 :

8 :
9:

init;
assert I; / * base case */
symbolic variables in B;
assume I;
if (C) I
B;
// oldPC
assert I; /* induction step */
// PC

1
else

assert P;

Fig. 5 . Single loop program (left) and instrumented program for proof (right)

4.1

For simplicity of presentation, we illustrate our methodology on a single-loop
program such as the one in Figure 5 (left); multiple loops can be treated similarly,
see e.g. [31]. The program consists of some (loop-free) initialization code, a loop
with condition C and (loop-free) body and post condition P.

To verify the program, i t suffices to find a loop invariant I , i.e. a formula
that is true when entering the loop, re-entering the loop during its iteration and
exiting the loop [MI. Moreover, I must be strong enough to produce verifiable
results (hence a loop invariant true is, in general, not sufficient). In a symbolic
execution framework, this amounts to checking the three assertions in the modi-
fied program in Figure 5 (right). Here, we replaced the while statement with an
i f statement; this is equivalent t,o placing a ‘Lcut” in the loop [MI. At this cut
point, we consider all the variables that are modified in the loop body initialized
to new symbolic values, and the path condition initialized to true. Note that a
symbolic execution from this point on is representative of an arbitrary number
of loop unrollings; the “input variables” at the cut point are the variables that
are modified by the loop body and their new symbolic values represent all cases.
Since the program loop has been cut, this symbolic execution will terminat,e and
have a finite symbolic execution tree.

We check for three assertions :

Proving Proper t ies using Symbolic Execut ion

- the assertion at line (4) is the base case of the inductive argument and checks
that I holds when entering the loop

- the assertion at line (7) is the induction step and checks that, assuming I
holds at the beginning of the loop, I also holds after the execution of the
loop body (i.e. I is inductive)

- the assertion at line (9) checks that I is strong enough for the property to
hold (Le. I A -43, t P)

If there are no assertion violations in the loop-free program of Figure 5 (right),
then the program of Figure 5 (left) does not violate the property P. With this
technique, we can verify properties of complex Java programs using the symbolic

execution framework presented in Section 3 . Howeyer. the technique requires the
generation and use of loop inyariants.

4.2 Invariant Generat ion

The generation of loop invariants is an intricate problem that often requires a
deep understanding of how these loops work.

We propose a novel technique for generating these loop invariants automat-
ically. The technique works backward, starting from the property to be proved
and it has three basic ingredients: iterative invariant strengthening: iterative
approximation and refinement.

Iterative Invariant Strengthening Consider again the example in Figure 5 .
The check for the actual property (Le. the assertion at line (9)) is used for defining
the initial candidate invariant; the R-eakest possihle choice is Io = 7(-CA--P). If
the base case fails for this candidate invariant. then the program is not verifiable
(i.e. it has an assertion violation).

Checking the inductive step generates all the symbolic paths for the loop
body. If for some of these paths, the invariant is not inductive, then it must
be replaced by a stronger invariant. +4ssume PCl, PC,, . . . , PC, are the path
conditions for the paths on which the verification of the induction step fails.
These path conditions characterize all the “inputs” to the loop body for which
the check for the inductive step fails. The invariant is strengthened by replacing
it with yl = Io A7PC1 A-PC2 A . . . A-PC, and the base case and the inductive
step are checked again.

If applied repeatedly, this process can introduce infinitely many new con-
straints, hence it can lead to an infbite sequence of exact candidate invariants4
11,4, . . . We propose to use a simple, but powerful approximation technique to
help termination.

Iterative Approximation -4t each step k 2 0, we apply our approximation
phase for the current candidate invariant rk. ?Ye should first observe that sym-
bolically executing the assumption and the body of the loop once (i.e. executing
lines (4) through (6) in the code of Figure 5 (right)) will generate a f inite num-
ber of symbolic execution paths, that contain a finite number of constraints; we
call these constraints the universe of constraints Uk at step k. uk contains the
constraints from the current invariant together with the constraints generated
by symbolically executing the loop body. New constraints (that are not in uk)
may get generated by the symbolic execution of the assertion at line (7).

We distinguish between ezact candidate invariants, that are generated during iter-
ative invariant strengthening and approximate candidate invariants, that are gener-
ated during iterative approximation. If the base case fails for an exact invariant, then
the program is not verifiable. But if the base case fails for an approximate invariant,
this might indicate that the approximation was too coarse so it needs refinement.

Let PC be a path condition for some path in the loop body afier checking
and discovering a violation for the assertion at line (7) ; and let oldPC be the
path condition for the same path in the loop body, before checking the assertion.
-4s we said, checking for the assertion itself can potentially add new constraints
to the path condition (i.e. the set of constraints accumulated in oldPC is a
subset of the set of constraints in PC). In the approximation phase, instead
of strengthening the invariant using PC, we use o l d P C , which is weaker than
PC (Le. PC + oldPC); this has the effect of obtaining a stronger invariant.
In other words, our approximation consists of a strengthening step in which we
drop all the newly generated constraints (e.g. constraints that are present in P C
but not in oldPC, and hence not in LJk) . The approximation phase generates
a sequence of approximate candidate znuariants I ; , I,?, . . .; since there are only
a finite number of constraints in Uk, this process is guaranteed to terminate,
yielding an inductive invariant I:, for some 1 > 0. I: is a boolean combination
of the constraints contained in U k .

Refinement If the base case fails for an approximate invariant, this may be
because the approximation is too strong. This means that the universe of con-
straints Uk is too coarse for proving the proDerty and it needs to be refined. A
simple refinement that we use is to consider Uk+l whenever the base case fails
for an approximate invariant. This amounts to backtracking to the candidate in-
variant I k , computing the next exact candidate invariant Ik+l and applying the
approximation phase at the next iteration. Note that since the set of constraints
in Ik is a subset of the set of constraints in Ik+l, we have that uk C Uk+l, and
hence uk+l will yield finer approximation steps. We should also note that if the
program has an error, i t will be eventually caught when the proof of the base
case will fail for an exact invariant.

Description of General Verification Method Now that we have seen the
basic ingredients, here is how the general method for checking properties works.
We use the check for the actual property to come up with the initial candidate
invariant Io. We then check the base case and the inductive step for this invariant.

- if both these checks yield no errors, then we are done, the result is that the
property holds for the program and the current invariant is inductive

- if the inductive step fails, we apply iterative approximation to get a stronger
invariant and we go back to checking the base case and the inductive step

- if the base case fails and the current candidate invariant is exact, then we
are done, and the result is that the property does not hold for the program;
if the base case fails and the current candidate invariant is approximate, we
apply refinement and we check again the base case and the inductive step

If there is an error in the program, our method is guaranteed to terminate,
reporting the error. However, if the program is correct with respect to the given
property, this iterative method might not terminate (and the refinement might
continue indefinitely).

v o i d example0 C
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12 :
13:
14 :
15:
16 :
17:
18:
19:

4.3

IntArrayStructure a = new IntArrayStructureO;
Expression i = new Integerconstant (0) ;
try C
assert (I) ; /* base case */
i = new SymbolicIntegerO ;
Expression j = new Symbolicinteger0 ;
Verify.ignoreIf(!I); /* assume I */

if (Expression.pc. -update-LT(i, a. length)
a.-set(i,neu IntegerConstant(0)) ;
i = i.-plus(new IntegerConstant(1));
... // O l d P C = PC;
assert(1) ; /* induction step */

I

>
else

assert Expression.pc.-update-EQ(a.-get(new IntegerConstant(O)),O);
// assert

> catch (AssertionError e) C
. _ _ // print o l d P C ;
... // print PC;

Expression.pc. -update-EQ (a.-get (j) ,O) ;

1 1

Fig. 6. Motixating example - verification (excerpts)

Illustration

Consider again our motivating example program from Section 2 . The program
is instrumented to allow symbolic verification and inductive reasoning, as illus-
trated in Figure 6. Any assertion violation triggers an AssertionError excep-
tion, n-hich is caught by the program (see lines (3) and (17)-(19) in the instru-
mented code). Variable oldPC stores the value of the path condition before the
check of the inductive step; the value of o ldPC is used in the approximation
phase for inyariant strengthening. Model checking the program using JPF prints
all the path conditions PC (together with oldPC) for the assertion violations.

TVe first check the assertion at line (15) - which fails. The initial candidate
invariant is then IO = -(a[O] # 0 A i 2 a.length). We now instrument this
formula to enable symbolic execution and add it at lines (4), (7) and (12), then
we model check the program and we find a counterexample for the following
path condition(s):

P c = (i + 1) 2 a.Zength A i > 0 A a[O] # 0;
oldPC= i > 0 A a[O] # 0.
At this point we use iterative approximation, and we use oldPC for strength-

ening the invariant (Le. we drop the newly generated constraint (it- 1) > alength
from PC), yielding the new candidate invariant: 1; = IO A '(2 > 0 A a[O] # 0).
This invariant suffices to prove the property.

In order t o check the additional assertion V j : a [j] = 0, we declare a new
symbolic variable j (at line (6)) and we check for the assertion at line (16),

that is instrumented for symbolic esecution. The initial candidate invariant is
IO = -(a[j] # 0 A i 2 alength A 0 5 j < a.length). hlodel checking the program
using this additional invariant gives a Counterexample for the following path
condition(s) :

P c = (a + 1) 2 a.length A a [j] # 0 A j < i A 0 5 i , j < alength;
oldPC= a [j] # 0 A j < a A0 5 a,j < alength.
Using oldPC for strengthening the invariant, we get 1; = I o A - (a [j] # O A j <

i A 0 5 i,j < a.length which suffices to prove the property.

4.4 Discussion

We have presented a method that extends the framework presented in [23] with
the ability of proving partial-correctness specifications. This yields a flexible
framework for checking Java programs. The general methodology for using our
framework is to first use it as a model checker. using depth first search with
iterative deepening or breadth first search.

If no errors are found up to a certain depth, then there is some confidence
that the program is correct (with respect to the given property), and a proof of
correctness can be attempted using the method presented in this section. If an
error is still present after the model checking phase, it will be found as a base
case violation for an exact candidate invariant.

Our approximation consists of dropping newly generated constraints; a poten-
tially more powerful, but more expensive, approximation would be that instead of
dropping constraints, to replace them with an appropriate boolean combination
of existing constraints from Uk. This has some similarities with the predicate ab-
straction techniques and we would like to investigate this further. Our technique
can also be used in conjunction with other, more powerful methods [7-9,321.

Our current system is not fully automated; although we discover all path
conditions that lead to an assertion violation automatically, we combine the
conditions by hand into a candidate invariant and add it back to the code to check
if it is inductive. An implementation of these features is currently underway.

Traditionally, invariant generation has been performed using iterative for-
ward and backward traversal, using different heuristics for terminating the it-
eration; e.g. convergence can be accelerated by using auxiliary invariants (Le.
already proved invariants or structural invariants obtained by static analysis)
[3,4,16,19,25,29,31]. Abstract interpretation introduced the widening operator,
which was used to compute fixpoints systematically [7-91. Alternative meth-
ods [5] use constrained based techniques for numeric invariant generation.

Most of these methods use techniques that are domain specific. Our method
for invariant generation uniformly treats different kinds of constraints. Our
method could be viewed as an iterative-deepening search of a sufficient set of
constraints that could express an invariant that .is strong enough for verifying
the property. Each step in this search is guaranteed to terminate, but deepening
(refinement) may be non terminating.

/ / @ precondition: a != null && b != null && a.1engt.h == b.length;
int find(int a, boolean 0 b) {
1: int spot = a.length;
2: f o r (int i = 0; i < a.length; i++) {
3: if (spot == a.length && aril != 0)
4: spot = i;
5: b[i] = (a[i] != 0);

6: assert (spot == a.length 1 1 blspotl);
7: return spot;

1

1

Fig. 7. Method find

5 Experiments

This section shows the application of our framework to the verification of several
non-trivial Java programs. We compare our work with the invariant generation
method presented in [13]. We also show an example for which our method is not
able to infer a loop invariant, in which case it can benefit from more powerful
approximation techniques.

-Method find Figure 7 shows an example adapted from [l3]. Method find takes
as parameters an array of integers a and an array of booleans b. The method
returns the index of the first non-zero element of a if one exists and a.length
otherwise. The method also sets the i-th element of b to true if the i - th element
of a is nonzero, and to false otherwise. The preconditions of the method state
that the arrays are not null and of the same length. The assertion states that
the index to be returned (spot) is either a . l e n g t h or b is true at that index.

To check that there are no assertion and array bounds violations, our frame-
work infers the following invariant (k = 0, two approximation steps):

~ (i < 0) A ~ (i 2 d e n g t h A 0 5 spot < a.kngth A ~ b [s p o t]) A
-(o 5 z < alength A spot = i A u[i] = 0)A
-(o 5 i < a.length A 0 5 spot < i A -b[spot])A
- (O 5 z < alength A i < spot < alength).
This invariant is sufficient to prove the property. As in [13] we checked an

additional assertion, which states that, at the end of the method execution, every
element of b before spot contains false: V int j : 0 5 j < spot -+ 7 b [j] .

To prove that this assertion holds, our framework generates the following
additional invariant:

'(i 2 a.Zength A 0 5 j < spot A spot 5 &length A @])A
~ (0 5 i! < a-length A 0 5 j < i A spot = &length A b [j]) A
- (O 5 i < a.lengthA 0 5 j < spot A spot = z A b [j] A u[i] # 0)A
-(o 5 i! < akngth A 0 5 j < spot A spot < i A b[j] A b[spot]).

Node partition (Node 1, int v) {
1: Node curr = 1;
2: Node prev = null;
3: Node newl = null;
4: Node nextCurr;
5: while(curr != null) C
6: nextCurr = curr.next;
7: if (curr.elem > v) C
8: if (prev ! = null)
9: prev.next = nextCurr;
10 : if (curr == 1)
11 : 1 = nextCurr;
12: curr.next = newl;
13: assert curr != prev
14 : newl = curr;

}
15: else I
16: prev = curr;

17: c u r = nextCurr;

18: return newl; >

1

1

void rn(int n) I
1: int x = 0;
2: int J = 0;
3: while (x < n) C
4: xi+;
5: y++;

1
6: /* hint: x == y; */
7: while (x != 0) C
8: X--;

9: y--;
1

10: assert (y == 0) ;
>

Fig. 8. Method partition (left) and another example (right)

The method presented in [13] starts with a set of “interesting” predicates
provided by the user and performs iterative forward abstract computations to
compute a loop invariant as a combination of these predicates. For proving the
first assertion in the example above, the method requires three predicates: spot =
a.lenyth, b[spot] and spot < i, while for proving the second assertion, the method
requires four additional predicates: 0 5 j , j < i, j < spot and b[j] .

In contrast, our method does not require any user supplied predicates, al-
though we should note that some of these predicates can be generated by several
heuristic methods that are also described in [13]. We should also note that the
invariants in [13] are more concise, as they are given in disjunctive normal form.
Unlike [13], our method works backward starting from the property to be checked
and it naturally discovers the necessary constraints over the program’s variables,
through symbolic execution and refinement. An interesting future research di-
rection is to use the method presented in [13] in conjunction with ours: at each
step k, instead of using approximation we could use the predicate abstraction
based method, starting from the set of constraints uk.

List Partition Figure 8 (left) shows a list partitioning example adapted again
from [13]. Each list element is an instance of the cIass Node, and contains two
fields: an integer elem and a reference next to the following node in the list.
The method p a r t i t i o n takes two arguments, a list 1 and an integer value V. It
removes every node with value greater than v from 1 and returns a list containing

all those nodes. The assertion states that c u r is not aliased with prev. Our
framework checks thar there are no assertion violations and it generates the
following sequence of candidate invariants.

Io = -(cum = prev A curr # null A cum. elem > v).
I,' = Io A T(curr # prev A cum' # null A prev # null A curr.elem > v).
Approximate invariant 1; is too strong (G !eads to a base case violation).

The framework then backtracks and continues with the next exact invariant:
I , = Io A l(cum' # prev A cum' # null A prev # null A curr.elem > v A

prev. elem > v A prev = cun.next) .
I: = Il A ~ (c u r r # prev A cum- # null A prev # null A curr.elem > v A

prev.elem > v A prev # cvrr.pext).
Approximate invariant I: is inductive. This example has shown that our

framework can handle constraints on structured data. We also successfully- ap-
plied our framework to the examples presented in [ll], where we checked the
absence of null pointer dereferences.

Pathological Example The iterative method for invariant generation pre-
sented in Section 4 might not terminate. For example, consider the code in
Figure 8 (right)5.

As our method works backward from the property, we first attempt to com-
pute a loop invariant for the second loop. Our iterative refinement will not
terminate for this loop. Considering increasing the number of exact strengthen-
ing steps does not help. Intuitively, the method does not converge because the
constraint z = y (and its negation) is "important" for achieving termination,
but this constraint does not get discovered by repeated symbolic executions of
the code in the loop body.

The programmer can provide additional helpful constraints by hand in the
form of LLhintsn, to boost the precision of the iterative approximation method.
For example, the hint at line (6) in the code of Figure 8 (right) has the effect
of nondeterministically adding the constraint (and its negation) to the current
path condition, and hence these constraints are also added to the universe of
constraints at each strengthening step. With this hint, we get the following loop
invariant for the second loop (k = 0, two approximation steps):

~ (y # O A Z = 0) A + 5 O A Z > 0) A l (y > O A Z # y).
Using this invariant as the postcondition for the first loop, we then get the

following loop invariant for the first loop, which suffices to prove the property:
-(z 2 n A s # y) A l (s < 0) A --(z 2 O A z < n A s # y).

We should note that more powerful techniques such as linear equalities ab-
stract domain [22] would work for this example. We would like to use our frame-
work in conjunction with more powerful abstraction techniques (such as [22])
or with alternative dynamic methods for discovering loop invariants (e.g. the
Daikon tool [12] could be used to provide useful "hints").

Note that several other methods, such as the predicate abstraction with refinement
as implemented in the SLAM tool [I] would also not terminate on this example.

6 Related work

Throughout the paper. %-e haye discussed related work on invariant generation.
Here we link our approach to software verification tools. King [24] developed
EFFIGY, a system for symbolic execution of programs with a fixed number of
integer vzriables. EFFIGY supported various prograrn ma!yses (such as asser-
tion baed correctness checking) and is one of the earliest systems of its kind.

Several projects aim at developing static analyses for verifying program prop-
erties. The Extended Static Checker (ESC) [lo] uses a theorem prover to verify
partial correctness of classes annotated with JML specifications. ESC has been
used to verify absence of such errors as null pointer dereferences, array bounds
violations, and division by zero. However, tools like ESC rely heavily on speci-
fications provided by the user and they could benefit from invariant generation
techniques such as ours.

The Three-Valued-Logic Analyzer (TVLA) [28] is a static analysis system
for verifying rich structural properties, such as preservation of a list structure in
programs that perform list reversals via destructive updating of the input list.
TVLA performs &sed point computations on shape graphs, which represent heap
cells by shape nodes and sets of indistinguishable runtime locations by summary
nodes. Our approximation technique has similarities to widening operations used
in static analysis. We would like to explore this connection further.

The pointer assertion logic engine (PALE) [26] can verify a large class of data
structures that c m be represented by a spanning tree backbone, with possibly
additional pointers that do not add extra information. These data structures
include doubly linked lists, trees with parent pointers, and threaded trees. Shape
analyses, such as TVLA and PALE, typically do not verify properties of programs
that perform operations on numeric data values.

There has been a lot of recent interest in applying model checking to software.
Java PathFinder 1301 and VeriSoft [15] operate directly on a Java, respectively
C program. Other projects, such as Bandera [6], translate Java programs into
the input language of verification tools. Our work would extend such tools with
the ability to prove partial-correctness specifications. The Composite Symbolic
Library [33] uses symbolic forward fixed point operations to compute the reach-
able states of a program. It uses widening to help termination but can analyze
programs that manipulate lists with only a fixed number of integer fields and it
can only deal with closed systems.

The SLAM tool [I] focuses on checking sequential C code with static data,
using well-engineered predicate abstraction and abstraction refinement tools. It
does not handle dynamically allocated data structures. Symbolic execution is
used to map abstract counterexamples on concrete executions and to refine the
abstraction, by adding new predicates discovered during symbolic execution.
We should note that tools like SLAM perform abstraction on each program
statement, whereas our method performs approximation (which can be seen
as a form of abstraction) only when necessary, at loop headers. This indicates
that our method is potentially cheaper in terms of the number of predicates (Le.
constraints) required. Of course, further experimentation is necessary to support

this claim. There are many similarities between predicate abstraction and our
iteratim approximation method and x e would like to compare the tn-o methods
in terms of relative completeness (as in r2.91).

7 Conclusion

We presented a novel framework based on symbolic execution for the verification
of software. The framework uses annotations in the form of method specifica-
tions and loop invariants. We presented a novel iterative technique for discover-
ing these loop invariants automatically. The technique works backward from the
property to be checked and it systematically applies approximation to achieve
termination. The technique handles uniformly both numeric constraints and con-
straints on structured data and it allows for checking universally quantified for-
mulas. M7e illustrated the applicability of our framework to the verification of
several non-trivial Java programs. Although we made our presentation in the
context of Java programs, JPF, and the Omega library, our framework can be
instantiated with other languages, model checkers and decision procedures.

In the future, we plan to ini-estigate the application of widening and other
more powerful abstraction techniques in conjunction with our method for invari-
ant generation. We also plan to extend our framework to handle multithreading
and richer properties. We would also like to integrate different (semi) decision
procedures and constraint solvers that will allow us to handle floats and non-
linear constraints. We believe that our framework presents a promising flexible
approach for the analysis of software. How well it scales to real applications
remains to be seen.

References

1. T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic predicate ab-

2. T. Ball, A. Podelski, and S. K. Rajamaxi Relative completeness of abstraction
straction of C programs. In Proc. PLDI, pages 203-213, 2001.

3

4.

5 .

6.

7.
8.

9.
10.

refinement for sofiware model checking. In Proc. T4CAS, 2002.
S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful techniques for the automatic
generation of invariants. In Proc. CAV, 1996.
N. Bjorner, A. Browme, M. Colon, B. Finkbeiner, Z. kianna, H. Sipma, and
T. Uribe. Verifying temporal properties of reactive systems: A STeP tutorial.

M. Colon, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using
non-linear constraint solving. In Proc. C4V, 2003.
J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. P%&eanu, Robby, and H. Zheng.
Bandera : Extracting finite-state models &om Java source code. In Proc. ICSE’OO.
P. Cousot and R. Cousot. On abstraction in soh-are verification. In Proc. CAV’OZ.
P. Cousot and N. Halbwachs. .\utomatic discovery of linear restraints among
variables of a program. In Proc. 5th POPL, 1978.
G. Delzanno and A. Podelski. Widen, narrow and relax. Technical report.
D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static checking.
Research Report 159, Compaq Systems Research Center, 1998.

FMSD, 16:227-270, 2000.

11. W. Dor, M. Rodeh, and M. Sagiv. Checking cleanness in linked lists. In Proc. SAS,
2000.

12. 41. D. Ernst, A. Czeisler, W. G. Grismold, and D. Notkin. Quickly detecting
relevant program invariants. In Proc. ICSE. .4CM, 2000.

13. C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In
Proc. POPL, 2002.

14. R. W. Floyd. Assigning meanings to programs. In Proc. Symposia in Applied
Mathematics 19, pages 19-32, 1967.

15. P. Godefroid. Model checking for programming languages using VeriSoft. In Proc.
POPL, pages 174-186, Paris, France: Jan. 1997.

16. S. Graf and H. Saidi. Verifying invariants using theorem proving. In Proc. 8th
CAV, pages 196-207, 1996.

17. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Proc.
9th CAV, pages 72-83, 1997.

18. S. L. Hantler and J. C. King. An introduction to proving the correctness of pro-
grams. ACM Comput. SUTV., 8(3):331-353, 1976.

19. K. Havelund and N. Shankar. Experiments in theorem proving and model checking
for protocol verification. In Proc. FME, pages 662-681, 1996.

20. C. A. R. Hoare. -4ri axiomatic basis for computer programming. Commun. ACM,

21. G. Holzmann. The Spin Model Checker: Primer and Reference Manual. 2003.
22. M. Karr. .Wine relationships among variables of a program. Acta Injormatica, 6,

1976.
23. S. Khurshid, C. S. P%iskeanu, and W. Visser. Generalized symbolic execution for

model checking and testing. In Proc. TACAS, 2003.
24. J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385-

394, 1976.
25. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Specification. 1992.
26. A . Moeller and M. I. Schwartzbach. The pointer assertion logic engine. In Proc.

PLDI, Snowbird, UT, June 2001.
27. W. Pugh. The Omega test: -4 fast and practical integer programming algorithm

for dependence analysis. Communications of the ACM, 31(8), Aug. 1992.
28. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages

with destructive updating. ACM Trans. Prog. Lung. Syst., January 1998.
29. -4. Tiwari, H. Rues, H. Saidi, and N. Shankar. A technique for invariant generation.

In Proc. TACAS, 2001.
30. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In Proc.

ASE, Grenoble, France, 2000.
31. B. Wegbreit. Communications of the ACM,

17(2):102'112, 1974.
32. P. Wolper and B. Boigelot. Verifying systems with infinite but regular state spaces.

In Proc. CAV, pages 88-97, 1998.
33. T. Yavuz-Kahveci and T. Bultan. ilutomated verification of concurrent linked lists

with counters. In Proc. SAS, 2002.

12(10):576-580, 1969.

The synthesis of loop predicates.

